Some Inequalities For The Largest Eigenvalue Of A Graph
نویسنده
چکیده
Combinatorics, Probability & Computing / Volume 11 / Issue 02 / March 2002, pp 179 189 DOI: 10.1017/S0963548301004928, Published online: 25 April 2002 Link to this article: http://journals.cambridge.org/abstract_S0963548301004928 How to cite this article: V. NIKIFOROV (2002). Some Inequalities for the Largest Eigenvalue of a Graph. Combinatorics, Probability & Computing, 11, pp 179-189 doi:10.1017/S0963548301004928 Request Permissions : Click here
منابع مشابه
Bounds for the Co-PI index of a graph
In this paper, we present some inequalities for the Co-PI index involving the some topological indices, the number of vertices and edges, and the maximum degree. After that, we give a result for trees. In addition, we give some inequalities for the largest eigenvalue of the Co-PI matrix of G.
متن کاملBipartite Subgraphs and the Signless Laplacian Matrix
For a connected graph G, we derive tight inequalities relating the smallest signless Laplacian eigenvalue to the largest normalised Laplacian eigenvalue. We investigate how vectors yielding small values of the Rayleigh quotient for the signless Laplacian matrix can be used to identify bipartite subgraphs. Our results are applied to some graphs with degree sequences approximately following a pow...
متن کاملSome topological indices of graphs and some inequalities
Let G be a graph. In this paper, we study the eccentric connectivity index, the new version of the second Zagreb index and the forth geometric–arithmetic index.. The basic properties of these novel graph descriptors and some inequalities for them are established.
متن کاملBounds for the Co - PI Index of a Graph
In this paper, we present some inequalities for the Co-PI index involving the some topological indices, the number of vertices and edges, and the maximum degree. After that, we give a result for trees. In addition, we give some inequalities for the largest eigenvalue of the Co-PI matrix of G.
متن کاملOn Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorics, Probability & Computing
دوره 11 شماره
صفحات -
تاریخ انتشار 2002